
Debian-Kernel Team Overview and Status

DebConf 5

dann frazier

dannf@debian.org

dannf@hp.com

Simon Horman

horms@debian.org

June 1, 2005

1

1 A Brief History

In the beginning, or at least as far back as our changelogs go, Herbert Xu
maintained the Debian kernel-source package:

kernel-source-2.0.29 (2.0.29-6) frozen unstable; urgency=medium

* Merged Debian changes from 2.0.30.

-- Herbert Xu <herbert@debian.org> Sun, 25 May 1997 22:26:30 +1000

Among his other Debian accomplishments, he also maintained the i386 and
alpha kernel-image packages, and was the original author of Debian’s initrd-
tools.

Maintaining these packages was (and still is) a time-intensive task. Herbert
was, in my experience, a maintainer who was very responsive to bug reports
and e-mail, and excelled at keeping up with security issues and new upstream
releases.

Since Herbert maintained the i386 and alpha kernel-image packages, builds
for those architectures closely tracked new kernel-source releases. However, each
of the other architectures had its own maintainer. Those maintainers may or
may not use a kernel-source package as their base. Those that did use kernel-
source did not all stay synchronized on the same version.

As an example, let’s take a look at the woody release. There are 10 kernel-
source packages in 3.0r5. An audit of the source packages that are included in
3.0r5 show 31 that produce kernel-image packages. Of those, 3 do not build-
depend on any kernel-source package. Instead, these 3 packages provide their
own linux source. Therefore, the security team would need to port a security
patch to 13 source trees and rebuild 31 packages in order to fix a vulnerability
in the woody distribution! And this is ignoring things like ABI changes which
may require rebuilds of module packages, and other packages that include their
own kernel binaries.

To attempt to solve this and other coordination issues, the creation of a
debian-kernel list was requested by Francesco Paolo Lovergine and Sven Luther.

Herbert resigned from Debian on May 19, 2004. Andres Salomon suggested
that a kernel team be created, citing the gnome team as an example of successful
team package maintenance. Herbert handed over the responsibility of finding
a new maintainer for the kernel packages to Martin Michlmayr, the presiding
Debian Project Leader at the time. Martin’s response was indeed an attempt
to assemble a kernel team. Later that month, William Lee Irwin III announced
his intent to NMU Herbert’s kernel packages on behalf of the newly formed
debian-kernel team.

Since then, much has been accomplished. I’ve captured some of the more
notable milestones here.

• 2003.11.03: debian-kernel list requested

2

http://lists.debian.org/debian-kernel
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=218923&archive=yes
http://lists.debian.org/debian-devel/2004/05/msg00276.html
http://lists.debian.org/debian-devel/2004/05/msg00288.html
http://lists.debian.org/debian-devel/2004/05/msg01246.html
http://lists.debian.org/debian-devel/2004/05/msg01441.html

• 2004.05.19: Herbert Xu resigns

• 2004.05.22: William Lee Irwin III announces his intent to NMU Herbert’s
package, changing the Maintainer field to the kernel team

• 2004.05.23: Christoph Hellwig splits the monolithic Debian kernel patch
into functional pieces

• 2004.06.15: First kernel-source upload by the kernel team (2.6.6-2)

• 2004.06.18: kernel project started on alioth

• 2004.06.21: initrd-tools added to svn

• 2004.06.23: Jeff Bailey sets up DebianKernel wiki

• 2004.07.12: source, ia64, powerpc and sparc in svn

• 2004.07.15: i386 added to svn

• 2004.07.27: amd64 added to svn

• 2004.07.28: mips and alpha added to svn

• 2004.08.09: hppa added to svn

• 2004.08.13: upstream 2.6.8 released

• 2004.08.14: kernel-source-2.6.8 uploaded

• 2004.08.17: s390 added to svn

• 2004.08.25: 2.4.27 chosen as the 2.4 kernel for sarge

• 2004.10.10: linux-kernel-di (0.1) released

• 2004.10.20: m68k added to svn

• 2004.11.02: kernel-source-2.6.9 ACCEPTED

• 2004.12.05: kernel changes ABI and breaks d-i for the first time

• 2005.01.08: kernel-source-2.6.10 ACCEPTED

• 2005.02.02: first formal debian-kernel irc meeting; 2.6.8 vs. 2.6.10 in sarge

• 2005.03.19: Andres Salomon commits kernel-source-nonfree-2.6.11-2.6.11

• 2005.03.26: kernel-source-2.6.11 ACCEPTED

• 2005.04.12: irc meeting, deciding that sarge kernels are now frozen

3

2 Who We are and What We Do

The Debian Kernel Team is made up of a loose collection of Debian Developers
and non-Debian Developers. We maintain a number of kernel and kernel-related
packages. This includes kernel-source-*, cramfs, initrd-tools, mkvmlinuz and the
kernel-images for most architectures. We currently only maintain Linux kernels.

Historically, architectures that were maintained outside of the kernel.org tree
would provide a kernel-patch package for their architecture, and apply that on
top of the latest kernel-source package when preparing an image build. With
the creation of the kernel team, this practice has become discouraged. It is
our goal to build as many architectures as possible from a common source tree.
This requires more active collaboration between porters, but has the benefit of
additional peer review and avoids surprising conflicts between the kernel-source
and the architecture patches later.

Like other debian teams, we communicate primarily via e-mail and irc.
Though we have had two formally scheduled IRC meetings, we do not hold
them regularly.

The kernel team uses svn.debian.org for source control.

3 Kernel Security

The Debian Kernel Team owns security support for Debian kernels in unstable
and testing. Security fixes to kernels in stable are managed by the Debian Secu-
rity Team. Like with any other Debian packages, users should not assume that
all known security issues have been fixed in the unstable and testing versions.
Less severe issues may be committed into svn but not uploaded until some more
significant event triggers a release. Fixes that change the ABI maybe delayed
to avoid breaking an existing release of DebianInstaller.

3.1 Security Maintenance

The Debian Kernel Team is notified of security vulnerabilities and fixes through
multiple channels. The testing-security team tracks known security vulnerabil-
ities in the whole of Debian/testing. The Ubuntu kernel team shares patches
with us, and other issues come in through the bug tracking system. The Debian
Kernel team doesn’t currently monitor closed lists such as vendor-sec, so secu-
rity fixes are not normally made available in unstable immediately after they
become public.

Security is high-maintenance for the Linux kernel - a quick count of the
changelog entries in kernel-source-2.6.8 that are clearly identified as security
yields 55; and this is just one of the three kernel-source trees currently main-
tained by the Debian Kernel Team. The kernel team, principally Simon Horman
and Andres Salomon, have been very diligent about getting vulnerabilities fixed
as they come in.

4

mailto:debian-kernel@lists.debian.org
irc://irc.debian.org/#debian-kernel

3.2 Kernel Team/Security Team Maintenance Hand-off

Sarge will be the first stable release since the kernel team came into existence.
As such, the hand-off process between the kernel and security teams is still being
defined. The biggest issue is how we manage security maintenance during the
freeze. Within this period, the security team hasn’t taken over maintenance yet,
but the kernel team is no longer able to make changes that will automatically
propagate into testing.

During the freeze, the kernel team is still actively tracking security updates
for unstable. Also, the kernels in testing more closely resemble the kernels in
unstable than the kernels in stable. These arguments suggest that the kernel
team is the logical maintenance unit during this period, and this will hopefully
save some work for the security team once the release occurs. The current
procedure is to continue uploading security fixes to unstable. This makes the
packages available in an environment that is likely to receive user testing. Once
sarge is released, these packages can be used as the basis for security uploads.

4 Bug Tracking

Due to the multiple layers in the existing kernel build process, a user discovered
bug may exist in any one of a number of packages. Most bugs should eventually
be assigned to the associated kernel-source package. Bugs related to the kernel
config should remain with the kernel-image package.

Since new package names are used when we move to a new upstream release,
we often need to reassign bugs against older packages. These bugs get reassigned
to the pseudo-package “kernel” so that they aren’t left behind and forgotten.

Andreas Barth put together a web page to track kernel bugs in sarge with a
severity of important or greater: http://bts.turmzimmer.net/kernel.php

5 Debian Patch Set

The Debian Kernel team aims to provide kernels for our users that are func-
tional, free, and secure, while minimizing our divergence from upstream.

5.1 Where Can I Find the Debian Patches?

Despite attempting to stay close to upstream, Debian applies a number of
patches to the tree for one reason or another. These patches are contained
in the kernel-patch-debian-VERSION package.

In the kernel-source-2.4.27 directory unpacked previously

Patch back to pristine source

/usr/src/kernel-patches/all/2.4.27/unpatch/debian

Patch the tree back up to the latest debian version

/usr/src/kernel-patches/all/2.4.27/apply/debian

5

http://bts.turmzimmer.net/kernel.php

Patch to an arbitrary release

/usr/src/kernel-patches/all/2.4.27/apply/debian 2.4.27-7

kernel-patch-debian-VERSION installs patches under /usr/src/kernel-patches/all/2.4.27/debian/.
Most patches include a comment at the top, describing briefly where they are
from, what they do, and their status with respect to upstream.

For example:

$ bzcat /usr/src/kernel-patches/all/2.6.8/debian/ia64_cyclone_nosmp.dpatch.bz2 | head

#! /bin/sh -e

<PATCHNAME>.dpatch by <PATCH_AUTHOR@EMAI>

##

All lines beginning with ‘## DP:’ are a description of the patch.

DP: Description: fix cyclone build on IA64 for UP

DP: Patch author: Jesse Barnes <jbarnes@sgi.com>

DP: Upstream status: submitted

. $(dirname $0)/DPATCH

And the meta-files in the series// subdirectory indicate which patch went
into which version.

• A line beginning with a + denotes an added patch

• A line beginning with a - denotes an removed patch

• A line beginning with a X denotes removed file,
usually to make the tree DFSG free.

5.2 Patch Acceptance Guidelines

Patches the kernel team like:

• Security Fixes

• Driver Fixes

• Stability Fixes

... actually, more or less any type of fix
Patches the kernel team generally reject:

• New features

• Out-of Tree Drivers

• My favourite patch-set

The best way to get a patch into the Debian kernel is to get it accepted
upstream first. Not only does this signify a certain level of quality, but it gives
us a guarantee that we will be able to drop this patch from our Debian-specific
tree at some point.

6

6 Kernel ABI Changes

Occasionally, and usually due to a security issue, a change is accepted into a
kernel package that changes its ABI1 The ABI change is represented by a change
in the SONAME portion of the kernel-image package name. For example, in
kernel-image-2.6.8-3-686-smp, the SONAME is 3. Changing the SONAME
has a significant impact, even outside of the kernel team. Obviously, any kernel-
module packages need to be recompiled against the updated kernel-headers.

Since a change in the SONAME changes the package name, apt will not
automatically upgrade a system to the new kernel. In order for users to track
the latest available kernel (meaning the latest kernel security fixes in the sta-
ble distribution), installing one of the kernel meta packages is strongly recom-
mended. For example, kernel-image-2.6-k7 currently depends upon kernel-
image-2.6.8-2-k7. If the kernel ABI should be incremented, a newer version will
be made available with a dependency on kernel-image-2.6.8-3-k7.

Changes to the kernel ABI also have an impact on the installer, which will
be discussed in the next section.

7 Working with the Debian Installer Team

The Debian Installer architecture is very modular. The highly granular compo-
nents (a.k.a., udebs) and their well defined interfaces provide a powerful mech-
anism for developers who wish to add or remove features, port the installer to
new hardware, or provide new installer features.

To illustrate this, let’s take a look at the components that are required to
permit a user to install Debian onto an XFS filesystem.

• partman-xfs - partman is Debian Installer’s partitioning and filesystem
engine. partman-xfs plugs into partman and provides methods for select-
ing, creating, and mounting an XFS partition. The partman-xfs udeb has
dependencies upon the xfsprogs and xfs-modules udebs.

• xfsprogs-udeb - This udeb provides the mkfs.xfs binary.

• xfs-modules - The udebs that provide this virtual packages provide the
linux kernel modules necessary for XFS support.

This level of granularity makes it possible to build a tiny installer by strip-
ping out all of the components that you know you’re users will not need. An

1The upstream ABI interface policy does not discourage ABI changes. In fact, changing an
interface to resolve a security issue can have positive characteristics. Quoting from Documen-
tation/stable api nonsense.txt: “Security issues are also a very important for Linux (SIC).
When a security issue is found, it is fixed in a very short amount of time. A number of times
this has caused internal kernel interfaces to be reworked to prevent the security problem from
occurring. When this happens, all drivers that use the interfaces were also fixed at the same
time, ensuring that the security problem was fixed and could not come back at some future
time accidentally. If the internal interfaces were not allowed to change, fixing this kind of
security problem and insuring that it could not happen again would not be possible.”

7

installer can be built that is limited to supporting reiserfs on IDE devices, sim-
ply by removing all of the unnecessary modules from the build. If additional
components are needed, they can be pulled from a network repository (assum-
ing the components necessary for accessing the network were not excluded, of
course!).

Like many udebs, kernel modules udebs were originally built from the same
source package as their deb counterparts. However, since kernel-images have
a different source package for each architecture, creating these udebs created
redundant work with inconsistent results. This is a class of problem that Joey
Hess excels at solving.

Joey’s solution was to create the kernel-wedge and linux-kernel-di packages.
linux-kernel-di creates the necessary udebs by declaring a build-dependency
upon the appropriate kernel-image, and copying its modules into the appropri-
ate udebs.A separate linux-kernel-di source package exists for each architecture
and kernel version. However, most of the required code lives in kernel-wedge,
and is shared by all linux-kernel-di packages.

The number of indirections between a build of the Debian Installer and the
actual source code used to create its kernel has led to a couple of interesting
issues:

7.1 Kernel ABI Dependency

The Debian Installer may pull kernel module udebs from multiple locations
during an installation, and these modules must be compatible with the runtime
kernel of the installer. As mentioned in section ??, occasionally a change is
included in a kernel build that breaks the module ABI. If the kernel module
udebs corresponding to the kernel used in a given build of Debian Installer are
superseded by modules conforming to a different ABI within a release, then
certain classes of network installs will be break.

7.2 Version Skew and GPL Compliance

Each link in the chain of packages that produce kernel udebs has its own lifecycle.
Consider the following chain of events:

1. kernel-image-2.6.8-ia64 (2.6.8-1) is built against kernel-tree-2.6.8-1

2. linux-kernel-di-ia64-2.6 (1.0) is built against the above kernel-image

3. All of the above packages propagate into testing

4. kernel-image-2.6.8-ia64 (2.6.8-2) is built against kernel-tree-2.6.8-2

5. kernel-image-2.6.8-ia64 (2.6.8-2) propagates into testing

At this point, the source code to recreate the Debian Installer build would
no longer exist in testing. Because of the “rollback” facility in kernel-tree, it is
believed that the GPL terms are satisfied if a new kernel-tree propagates into

8

http://wiki.debian.net/?DebianKernelTree

testing before kernel-image is rebuilt against it. However, kernel-image does not
provide a similar feature. Thanks to James Troup and the release team, this
issue was resolved with the creation of a special sarge-r0 distribution containing
packages used to build Debian Installer.

8 In the Works

8.1 Architecture Synchronization

Earlier ??, I noted that a major problem with the woody release was the large
number of different kernel-source packages used to build kernel-images. Mini-
mizing the number of active kernel-source packages is one of a number of archi-
tecture synchronization issues the kernel team is attempting to resolve. A daily-
generated page provides a window into how closely synchronized architectures
are on a given kernel-tree release: http://people.debian.org/ dannf/kernel-stats/kernel-avail.html.
In the future, Dann plans to update this page to track linux-kernel-di packages
as well.

kernel-source skew isn’t the only architecture synchronization issue we face.
Other issues include:

• Consistent Kernel Configs - Each architecture maintains kernel config files
independently. It would be nice if all architectures had a common feature
set and the same things were built as modules on all architectures, where
feasible.

• Build System Bugs - Many of the kernel-image packages diverged from
the same code base. When a bug in the build system is discovered it
maybe fixed within one of the packages, only to pop up on a different
architecture later. Structural changes, such as the introduction of the
kernel-tree concept or the building of udebs for Debian Installer, usually
take a long time to complete (if ever), since the changes must be made to
multiple packages. kernel-package provides a code base that is shared
among multiple architectures, but more commonality is desired.

These are some of the reasons the kernel team is looking to create a unified
source package that builds kernel packages for multiple architectures.

8.2 A Common Source Package

At the time of this writing, Jurig Smakov has announced a working prototype of
a common kernel-source-2.6.11 package that is capable of building i386 packages.
The 2.6.12 timeframe is being suggested as a goal for a first upload of this
package.

9

http://people.debian.org/~dannf/kernel-stats/kernel-avail.html

8.3 Moving drivers to non-free

With 2.6.11, the kernel team has started the process of moving drivers which
contain binary blobs to the non-free section. These drivers have been removed
from main, and Andres Salomon has created a kernel-nonfree-modules package.
However, many of these firmware blobs exist in source files with only a GPL
boilerplate. Since these firmware blobs are not provided in “the preferred form
of the work for making modifications to it”, as required by the GPL, Debian
cannot legally redistribute these files. Sven Luther and other members of the
kernel team are working to contact the associated copyright holders, requesting
they modify the license to explicitly grant redistribution rights of this data in
“blob” form. At the time of this writing, this process is beginning to produce
some results. Both QLogic and Broadcom (tg3 driver) have provided promising
responses.

8.4 initramfs

initramfs is a feature new to 2.6 linux kernels, and aims to solve many of the
problems associated with initial ramdisks (initrds).

Jeff Bailey has been working on an initramfs-based replacement for initrd-tools.
Quoting from http://www.ubuntulinux.org/wiki/Initramfs, some of the ben-

efits of initramfs include:

• CPIO archive, so no filesystems at all are needed in kernel. The archive
is simply unpacked into a ram disk.

• This unpacking happens before do basic setup is called. This means that
firmware files are available before in-kernel drivers load.

• The userspace init is called instead of prepare namespace. All finding of
the root device, and md setup happens in userspace.

• An initramfs can be built into the kernel directly by adding it to the ELF
archive under the section name .init.ramfs

• initramfs’ can be stacked. Providing an initramfs to the kernel using the
traditional initrd mechanisms causes it to be unpacked along side the
initramfs’ that are built into the kernel.

• All magic naming of the root device goes away. Integrating udev into
the initramfs means that the exact same view of the /dev tree can be
used throughout the boot sequence. This should solve the majority of the
SATA failures that are seen where an install can succeed, but the initrd
cannot boot.

By including hotplug-ng and udev, we will be able to perform device autode-
tection from within the initramfs; however it is unclear if Debian users will be

10

http://www.ubuntulinux.org/wiki/Initramfs

able to handle the memory footprint required to have all possible modules avail-
able at initramfs time. initrd-tools tries to solve this problem by detecting
the necessary modules at initrd creation time, but this process is error-prone.

Jeff has also been able to reduce the size of an initramfs when compared to
a typical Debian initrd by using klibc instead of glibc.

Unfortunately, not all Debian architectures have a 2.6 kernel, so it will be
some time before we can do a universal switch to an initramfs process.

The current status of this process can be found at: http://wiki.debian.net/?KernelFirmwareLicensing.

8.5 Automated/Nightly Testing

Automated testing from source control is a goal for the kernel team, but devel-
opment is in the early stages. Maybe we’ll see some progress here at DebConf5!

9 How Can I Help?

Bug reports are always welcome - the more information you can provide, the
better. Try to do as much investigation as you can prior to reporting a bug.

• STFW :) Check LKML/Google to see if the bug you found has already
been discussed.

• Test the latest upstream version of the kernel to see if your bug still exists.

• If the bug came about after an upgrade, try to narrow down the version
in which it was introduced.

• Take the time to make sure someone else hasn’t already filed your bug by
searching the bug tracking system for bugs owned by kernel-team@lists.debian.org.

11

http://wiki.debian.net/?KernelFirmwareLicensing
http://bugs.debian.org/cgi-bin/pkgreport.cgi?which=maint&data=kernel-team%40lists.debian.org&archive=no

