
A cute introduction to Debtags

Author: Enrico Zini

Contact: enrico@debian.org

Revision: 1.0

Date: 2005-05-31

Copyright: GNU GPL v2 or later.

Abstract

The Debian archive is getting larger and larger, and the software more and more diverse and complex.
Organising software in the archive is difficult, and the existing section system, designed to cope with a
much smaller number of packages, is no longer sufficient. The goal of Debtags is to provide a working
alternative for categorising software that can cope with our numbers.

The core idea of Debtags is to adapt the technique of Faceted Classification to be used for our
packages. Faceted Classification is a 70-years-old library science technique which is being rediscovered
and loved by modern Information Architects.

Debags attaches categories (we call them tags) to packages, creating a new set of useful structured
metadata that can be used to implement more advanced ways of presenting, searching, maintaining and
navigating the package archive.

Example uses of Debtags include searching for software, browsing the archive, and filtering out
unwanted groups of packages.

The Debtags effort needs to face three major problems:

1. Creating a suitable vocabulary of categories.

2. Categorizing the vast array of packages.

3. Having applications make use of Debtags data.

All three issues are being actively addressed with good results:

• Debtags has already acquired a large set of tags, even if the set is in continuous need of refining;

• a large part of our package archive has been at least partially categorised, and there is a tool
called debtags-edit that every developer and user can use to categorise the packages they know
best;

• a new library called libapt-front is being developed as a smart front-end to libapt which can also
access other data sources, such as Debtags, popularity contest (popcon) results, debram metadata
and more.

This paper gives a broad technical overview of the Debtags project, its theoretical foundations, and
the tools available for it now. The paper also offers some practical tutorials on how to do all sort of
nice Debtags tricks.

1

mailto:enrico@debian.org
http://debtags.alioth.debian.org
http://libapt-front.alioth.debian.org
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org

Contents

Introduction

Lots and lots of packages

Archive sections

Debtags theoretical foundations

Classifying software

Faceted Classification

Some use case examples

The design of Debtags

Facets

Tags

The Vocabulary

The tag database

Using debtags

debtags

debtags-edit

Running debtags-edit

Searching packages

Tagging packages

packagesearch

packagebrowser

debram

Where to go from here

Contributing to the categorization

Using debtags-edit

Using debtags

Using tagcolledit

Automated tagging

Adopting a tag or a facet

Contributing to the vocabulary

If you are a package maintainer

Integrating Debtags in other applications

libdebtags1-dev, python-debtags, libdebtags-perl

libapt-front

User interface issues

Effective View Navigation

Conclusions

Bibliography

2

Introduction

Lots and lots of packages

As of May 24, 2005, my Debian unstable system counts 16769 different binary packages, and I feel very
powerful.

I can access at least three complete office suites, various painting programs (of which at least one is
designed for kids and one for world-famous digital effect movie studios), software for massively parallel
quantum chemistry, GIS geographical tools, dental office management software, and, my favourite, a
tool to have a cute cow read my presentations:

/ a tool to have a cute cow read \

\ my presentations: /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

As a Debian user, I am very powerful. However, there is a simple question that I’m having a hard
time answering:

What do you want to install in your computer?

[] 3dchess 3D chess for X11

[] 3ddesktop "Three-dimensional" desktop switcher

[] 44bsd-rdist 4.4BSD rdist.

[] 6tunnel TCP proxy for non-IPv6 applications

[... 16765 more options follow ...]

And another one:

What do you want to remove from your system to make up some space?

[1563 options follow]

If I search the package archive, I get:

• apt-cache search web browser: 197 results.

• apt-cache search text editor: 170 results.

• apt-cache search image editor: 22 results, but Gimp is NOT among them.

Now, I profoundly believe that having choice is really good: what we need is not to reduce the size
of the archive, but to create some way to make it easier for people to find what they need.

What does it mean, “make it easier”? Here is a nice measure: “in front of a list with more than
about 7 plus or minus 2 items, our brain goes banana” [ZEN] [MILLER].

3

Archive sections

The way we are currently organizing packages is by grouping them in sections: Debian main has about
16197 binary packages divided in 33 different sections. However, this means an average of 490 packages
per section, which is too many.

In fact the problem is even worse than this, because some sections are more lightly subscribed than
others. After all, the more packages a section has, the more likely that the one package you want is
found therein. By this metric, the Debtags team calculates that the typical Debian package is found in
a section of 785 binaries. Such a number approaches the size of the entire archive at the time when the
section system was first introduced.

Increasing the number of sections would not help too much: to have an average of 20 packages per
section we would need 800 different sections: but then, how does one choose among 800 sections?

Besides the numbers, current software is getting more and more complex: for example, which section
should a full-featured web browser such as Mozilla be put in? net? web? mail?

Sections were fine when Debian was smaller and simpler. Now there is a bug (#144046: Sections are not finely grained)
asking for something better.

That bug has been assigned to Debtags. And Debtags is going to close it.

Debtags theoretical foundations

The original idea of Debtags’ was just to allow more than one section per package. That would have
allowed us to categorize Mozilla under net, web and mail simultaneously, allowing the user to find it
under whichever classification they had in mind.

That is how we started, and that is how we got stuck. What do we mean with net? Some possibilities
are:

• The package has a program that can use information not stored in the local computer;

• The package has code which invokes the socket() system call;

• The package analyses firewall logs;

• The package is useful to configure and maintain a network;

• All of the above.

All of these are probably valid interpretations. And then, why shouldn’t all of Gnome belonging to
net, since the ’N’ in GNOME means ’Network’?

Classifying packages is a bigger problem than it seems at first sight. Luckily I suspected that someone
has been thinking about it already, and I did some research.

It turned out that there is a whole new science calling “Information Architecture” whose goal is to
sort out the Information Mess of the Information Age.

It also turned out that our problem had been solved somewhere in 1933, but they forgot to leave
me a note.

Classifying software

Once upon a time in India, a mathematician and librarian called Shiyali Ramamrita Ranganathan
started a secret project to innovate software categorization for Debian. It was about 1931, and he did
not want to use the words “Debian” and “software” just yet, so he disguised all of his work under words
such as “library”, “books” and “library science” [STECKEL].

Ranganathan is famous for his five laws of library science:

4

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=144046
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org
http://lists.alioth.debian.org/pipermail/deb-usability-list/2004-January/000248.html
http://en.wikipedia.org/wiki/Ranganathan
http://en.wikipedia.org/wiki/Library_science
http://en.wikipedia.org/wiki/Ranganathan
http://en.wikipedia.org/wiki/Five_laws_of_library_science

Figure 1: Shiyali Ramamrita Ranganathan

5

1. Books are for use.

2. Every reader his or her book.

3. Every book its reader.

4. Save the time of the reader.

5. The Library is a growing organism.

If we do a simple word substitution, we obtain the perfect rules for classifying Debian packages:

1. Software is for use.

2. Every user his or her software.

3. Every software its user.

4. Save the time of the user.

5. Debian is a growing organism.

These rules look simple, yet they are important and deep: rule number 1 tells us that software is
there to be used, which means that people need to and know about it and find it. This is the main
reason for organizing packages: to allow people to use them.

Rules number 2 and 3 tell us that not every software is appropriate for every user, and users need
to be able not only to find software, but also to find the software which is appropriate for them.

Rule number 4 tells us that the research must be quick and efficient, and the user should not spend
a lot of time trying to search through long lists of packages, or learning a complicated search system.

Rule number 5 says that Debian keeps growing and evolving, and any system we design will have to
cope with that.

This is exactly the purpose of Debtags. Codified by Ranganathan in 1931.

Faceted Classification

Ranganathan has been working all his life to solve the problem of classifying books in big libraries. To
do so, he designed a system that he called Faceted Classification or Colon Classification:

A faceted classification [is a way of classification that] uses clearly defined, mutually exclu-
sive, and collectively exhaustive aspects, properties, or characteristics of a class or specific
subject.

Wynar, Bohdan S. ”Introduction to cataloging and classification”. 8th edition. p. 320

In other words, with faceted classification we have more than one set of categories: one for each
aspect of our packages. Every different aspect of an object is described using a separate set of categories,
called “facet”.

Ranganathan has also given suggestions on how to identify the facets to categorise. He suggested
that there are 5 fundamental kinds of facets, which are sometimes addressed as “PMEST” because of
their initials:

Personality what the object is primarily about. This is considered the “main facet.”

Matter the material of the object.

Energy the processes or activities that take place in relation to the object.

Space where the object happens or exists.

Time when the object occurs.

6

http://debtags.alioth.debian.org
http://en.wikipedia.org/wiki/Five_laws_of_library_science
http://en.wikipedia.org/wiki/Ranganathan
http://en.wikipedia.org/wiki/Ranganathan
http://en.wikipedia.org/wiki/Ranganathan

If at first sight this seems unrelated to software, remember that Ranganathan was talking about
books, and we need to do some mapping. For example, pixelcharmer has been mapping the PMEST to blog entries:

• Personality = topic

• Matter = form

• Energy = process

• Space = I don’t believe I’ve used this facet, or perhaps it’s the permalink of the post itself? Yes,
let’s go with that for now.

• Time = date

Let’s follow her steps and map the PMEST to Debian packages:

Personality What the package is primarily about. Answers the question what is it?

Matter The “material” that constitutes the package. Answers the question what is it made
of?

Energy The processes or activities that take place in relation to the object. Answers the
question what do I do with it?

Space Where the object happens or exists. Answers the question where do I use this?

Time When the object occurs. I still haven’t found a suitable mapping for this: it might
just be that Debian packages exist a bit outside of time, and that would explain how
come Sarge took so much to release.

In Debtags theoretical foundations I gave an example of many different ways to interpret the section
net. We can try to look at some of them again using the PMEST:

• “The package has a program that can use information not stored in the local computer”. Is storing
such information the main purpose of the program? Then the program’s personality would need
to be categorised as related to the network. Else, the program’s energy would be categorised as
network-related instead.

• The package has code which invokes the socket() system call. This is about the matter of the
package: the technology it uses, the functions it invokes.

• The package analyses firewall logs. This would mean that the personality, or the energy of the
program is related to the network, but not its matter : if we look at how the package is made, we
mainly see a text parser.

The PMEST is useful in that it gives us more mental structure to understand the properties of an
object and to resolve the ambiguities in its categorisation.

Some use case examples

Let’s see how this could help, with three examples:

• User A wants to find a simple software to manage their collection of audio CDs, which integrates
nicely with his or her Gnome desktop;

• Developer B wants to write a software to manage a collection of audio CDs, and is looking for
code and examples in existing applications and libraries;

• System administrator C works for a radio broadcaster and wants to set up a mail interface that
allows people to search the radio collection of audio CDs; he or she is looking for the right existing
tools to get it done.

7

http://en.wikipedia.org/wiki/Ranganathan
http://pixelcharmer.com
http://www.pixelcharmer.com/fieldnotes/archives/process_designing/2003/000348.html
http://lists.alioth.debian.org/pipermail/debtags-devel/2005-April/000347.html

Now, let’s look better at what they want:

• User A is interested in integration with Gnome, not implementation details.

• Developer B mainly cares about implementation details, to find good examples to build from.

• System administrator C is only interested in commandline applications (no matter how they are
implemented) or alternatively perl libraries.

User A will probably start searching through Gnome software. User B will probably start searching
among software implemented in C. User C will probably start searching for commandline tools. And
they will probably all look for software to manage an audio CD collection.

These three people are looking at the package archive from different angles.
Luckily, Faceted Classification does just that: it categorizes the items from different aspects. If

we do things right, there will be something like a ’Desktop’ facet, an ’Implemented-in’ facet, a ’Kind-
of-interface’ facet and a ’Purpose’ facet, each of these facets categorised with their sets of tags; and
everyone will be able to find what they are looking for.

The design of Debtags

The key concepts of Debtags are Facets, Tags, the Vocabulary and the Tag Database. Let’s consider
them one by one.

Facets

Facets are the aspects of our packages that we choose to categorise. Example of facets in Debtags are
implemented-in, culture, interface, media.

Each facet defines an aspect of packages we look at. For each facet there is a set of categories that
we use to describe what we see when we look at that aspect of a package.

Faceted categorization is like saying, “If I look at what is the use of this package, I see editing”. “If
I look at what is its user interface, I see a text-mode user interface”.

Facets are “If I look at X”; tags are “I see X”.
The list of facets currently categorised by Debtags is available in The Vocabulary.

Tags

The tag is a Debtags category. Debtags uses different sets of categories, that we call tags, to categorise
different facets of software. We use the word tags instead of categories because it’s shorter, and we talk
about tags a lot.

In Debtags, we represent tags with a short English name, prefixed by the name of the facet it
categorises. For example, when we look at what media types a package can work with and we categorise
“The Gimp”, we use the tag media::rasterimage.

The Vocabulary

The Vocabulary is where we store the list of facets and tags that we use for Debian packages.
Having a common vocabulary is important so that we all refer to the same property with the same

name. Other benefits of the common vocabulary include the abilities to present selections of facets and
tags in a user interface, to store meta-information about them (such as a short and long description,
possibly in many languages), and to validate classification information.

8

http://debtags.alioth.debian.org
http://debtags.alioth.debian.org

The Debtags vocabulary is the file that delineates the facets and lists the respective tags that can
be used to categorize Debian packages. The vocabulary file contains whatever needs to be stored about
facets and tags. At the moment this means:

• a list of facets and their tags;

• description of facets and tags;

• editorial information;

• comments.

This information is stored in a format similar to the usual Debian package records. For example:

Facet: implemented-in

Description: Language that the package is implemented in

Nature: matter

Status: complete

Tag: implemented-in::c++

Description: C++

This defines a facet called implemented-in and a tag c++ inside it.
The main location of the vocabulary is in the subversion repository at svn://svn.debian.org/debtags/vocabulary/debian-

packages; from there, it makes its way to the default Debtags tag source and then, by means of debtags
update, it is stored locally in /var/lib/debtags/vocabulary. It is also indexed by debtags update

to allow applications to quickly lookup entries inside it.
There are currently 32 facets defined, containing a total of 440 tags. To see the facets along with

their descriptions and other data, you can run debtags update and then use grep-dctrl:

grep-dctrl -FFacet -r . /var/lib/debtags/vocabulary

A tutorial on sending patches to the vocabulary can be found at http://debtags.alioth.debian.org/vocabulary.html

The tag database

A tag is assigned to a package by entering the appropriate information in the Tag Database.
Designing this database is one of the most tricky and important implementation details of Debtags,

as it is the way to share the tags and make them useful.
An obvious place for storing the tags is in the control file of the packages, together with the other

package metadata. This possibility has been discarded, however, for a couple of good reasons:

• The aggregated package database is already big enough, and there are no clear short term ways
of addressing this problem

• “Debian is a living organism”: tags can change fairly often, because the classification is refined, a
new tag is introduced or a whole new facet of packages is classified, and we cannot afford a new
package upload or ftpmaster intervention every time such a change happens.

We chose instead to store tag data in a central tag repository, located at http://debian.vitavonni.de/packagebrowser,
from which it can be downloaded in the user’s computer by means of the debtags update command,
just like the package database can be downloaded by means of apt-get update.

This makes it possible to store and maintain the categorization data without causing an added
burden to the Debian infrastructure. It also allows to have different tag sources merged together.
Check this out because it’s cool!

Let’s make an example with a fictitious Debian-Circus CDD (Custom Debian Distribution) that
chooses to categorise packages also from the aspect (“facet”) of their possible use in a circus. To

9

http://debtags.alioth.debian.org
http://subversion.tigris.org/
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org/vocabulary.html
http://debian.vitavonni.de/packagebrowser
http://cdd.alioth.debian.org/
http://cdd.alioth.debian.org/

do so, they want to have in Debtags a circus facet, categorised with tags such as travel-info,
installation-procedures, inventory, artist-management, show-management, propaganda, account-
ing.

To realise this, Debian-Circus can create their own piece of Vocabulary and Tag Database and make
it available to be downloaded as a tag source. debtags is able to download data from various tag sources
(listed in /etc/apt/sources.list) and merge them together.

Different tag sources can be merged easily when facets differ, and they complete each other’s view
of packages by shedding light on more aspects of them.

Now, Debian-Circus provides categorization along the circus facet, and Debian provides categoriza-
tion for the suite and media facets. Any circus sysadmin can now merge this information together and
look for circus::propaganda software for suite::gnome that can work with media::vectorimage.

Isn’t it exciting?
The main location of the database is inside Erich Schubert’s packagebrowser at http://debian.vitavonni.de/packagebrowser.

From there, it makes its way to the default Debtags tag source and then, by means of debtags update,
it is merged with other tag sources and stored locally in /var/lib/debtags/package-tags.

The database is stored locally in an easily parsable format that can also be understood by tools
such as tagcoll and tagcolledit. It is also indexed by debtags update to allow applications to look
entries up quickly in it.

The individual user can modify the Debtags database locally. Such local modifications are stored as
tag patches in the file ~/.debtags/patch in the user’s home directory. A tag patch is a special patch
format that can represent a change to a tag database, and can also be applied to future versions of the
database, so that your changes are preserved across debtags update invocations.

Another useful feature of the tag patches is that you can send them to the central database, which
will integrate them with the rest of the data. You can do this by using debtags-edit (it has a “File/Mail
changes to central database” feature) or by using the command debtags send.

Using debtags

Debtags is not only categorization data, but also a suite of tools that allow to work with the data:

debtags Commandline interface to libdebtags functions and Debtags administration tool.

debtags-edit GUI application to search and tag packages.

tagcoll Commandline tool to manipulate generic collections of tagged items.

tagcoll-edit GUI application to perform mass-editing of collections of tagged items.

libtagcoll1 Library providing generic functions to manipulate collections of tagged items .

libdebtags1 Main library with Debtags functions, and wrappers to many languages.

Erich Schubert’s packagebrowser Central tag archive, browsable and editable online.

autodebtags Experimental tool to perform some automatic and heuristic tagging tasks.

The suite is quite large and diverse, and it allows to do many different kinds of analyses and
manipulations of the tagged data.

If you are new to Debtags and you are looking for some function, chances are that it is already
implemented somewhere: if you cannot find it, don’t hesitate to ask in the debtags-devel mailinglist.

10

http://debian.vitavonni.de/packagebrowser
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org
http://lists.alioth.debian.org/mailman/listinfo/debtags-devel

debtags

These are some example uses of debtags:

debtags update Updates the local Debtags information.

debtags stats Prints some statistics about Debtags.

debtags show mutt Like apt-get show mutt, but also shows the mutt’s Debtags tags.

debtags grep ’use::editing && media::rasterimage’ Shows all packages that allow to edit raster
images. You can use full arbitrarily complex boolean expressions such as (use::playing && !

use::recording) && media::audio && (interface::commandline || interface::text-mode).

An interesting one is this: !culture::* || culture::italian: it shows all packages that are
either not locale-specific or that are specific to my locale. This can be used in package managers
to filter out packages for locales not used by the system.

debtags tagshow use::editing Shows the vocabulary information about the tag use::editing.

debtags tagsearch edit Shows all the tags whose information (such as the name or the description)
matches the string “edit”.

debtags cat Outputs the entire tag database, including local modifications. It is useful to provide
data to other packages such as tagcoll or tagcolledit.

debtags todo Prints a list of the packages installed in the system that are not yet tagged.

debtags todoreport Generates a report of packages that probably need to be tagged better.

debtags-edit

Figure 2: Screenshot of the main window of debtags-edit.

debtags-edit is a graphical interface for searching and tagging packages.

11

http://debtags.alioth.debian.org
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org

Since I’m always busy experimenting with new features, the interface is quite rough and I’ll have to
explain it a moment.

Running debtags-edit

Try running debtags-edit. If it does not work, it might be because you have not yet run debtags

update to download the Debtags data: do it now and run debtags-edit again.

Searching packages

On the left-hand side of the application window there is a Filter area which allows you to look for
packages: you play with the controls, and a list of matching packages appears in the bottom left part
of the screen. A notable part of the filter area is the Tags area, which lets you add tags to the filter.

Try pushing the Add button of the tags area and add something like “Use/Editing”: the list will
display all packages which can edit something.

Now push “Add” again: the list of facets and tags has narrowed down to only the available possibil-
ities, and if you look inside the “Media” facet, you’ll see a list of the possible kinds of media that can
be edited using Debian packages.

Note

If this example does not work for you, check what is in the“Maintainer:” field: there might be your
e-mail there. That is because debtags-edit wants to kindly suggest you to tag the packages you
maintain

1
. For the purpose of this example, you can clear the “Maintainer:” field and try again.

After I tell you how to tag packages, please put your address back there ;)

Using the filter can search packages by name, do a full-text search à-la apt-cache search, search
by maintainer, installed status or tags. This makes debtags-edit an interesting tool already, but let’s
see more.

Tagging packages

You can now click on a package name in the bottom-left part of the application: that will display the
package in the main display on the right side. At the bottom part you will see all the package data, very
much like the output of apt-cache show, while in the top part you will see the tags of the package. If
the package you chose has no tags, try looking for debtags: that will be nicely tagged.

Now try adding a new tag to debtags: try adding “Games/Toys”. Push the other “Add” button
below the tag list in the top-right part of the window, and navigate the complete facet list until you
find the “Games” facet: inside it you will find “Toys”. Select it: the tag has been added, and you made
your first step into Debtags tagging!

Now try doing “File/Save”, then go to a terminal and type debtags show debtags: you will notice
that your new games::toys tag is already there. Cool, isn’t it?

What happened is that debtags-edit saved your modifications in ~/.debtags/patch, and all
Debtags-aware applications read that file at startup. Have a look at the file: it’s just a patch with
the change you made, and its format is such that it can be applied to any future version of the tag
database. Isn’t it smart? I’m so proud of it!

1 If debtags-edit cannot find the DEBEMAIL environment variable, it will instead leave the“Maintainer:”
field empty and preselect “Status: Installed”, kindly suggesting you to check if the packages you know
and use everyday are tagged well enough.

12

http://debtags.alioth.debian.org

Now go back to debtags-edit and look in the “File” menu: there’s a “Mail changes to central
archive” option. If you click on it, it will mail the contents of your ~/.debtags/patch to the central
archive, and the next day your contribute will be available to everyone when they will do debtags

update.
What else do you need to contribute to the categorization? Only one more thing maybe: subscribe

to the debtags-devel mailing list.

packagesearch

Figure 3: Screenshot of the main window of packagesearch.

packagesearch is a package search program written by Benjamin Mesing. Among its many features,
it is able to make use of Debtags data.

To use packagesearch, you set search parameters in the top part of the application, and it displays
the results in the bottom. The Debtags search is on the right side, on a tab named “Debtags”.

Try running packagesearch, then select the Debtags tag “Use/Editing”: you will see all the packages
that can edit something. Then select “Media/Raster Image” and you will see all raster image editors in
Debian that are known to Debtags.

Compared to debtags-edit, packagesearch does not allow to change the categorization, but it features
more search functionalities, and it also integrates apt-file searches.

packagebrowser

Lastly, the central tag archive has a web interface (the packagebrowser, written by Erich Schubert) that
can be used to navigate the Debtags data and edit them online. You can find it at http://debian.vitavonni.de/packagebrowser/.

13

http://lists.alioth.debian.org/mailman/listinfo/debtags-devel
http://packagesearch.sourceforge.net/
http://packagesearch.sourceforge.net/
http://packagesearch.sourceforge.net/
http://packagesearch.sourceforge.net/
http://debtags.alioth.debian.org
http://debian.vitavonni.de/packagebrowser/

One way of working with the packagebrowser is to help with the not yet tagged packages, following
the link at the top of the main page.

Another way is to work on packages is from the Debtags TODO report, in which all package names
directly link to their edit page.

Note

The packagebrowser edit page lists all available tags and is very long. However, modern browsers
have very quick and convenient search functions such as the “/” function in Firefox. Using those
functions it becomes quite fast and easy to find what you need in the list of tags to add.

debram

In the words of its developer Thaddeus H. Black, Debram was a primitive attempt to treat the

same Debian package problem Debram more properly solves. Today, Thaddeus has enthusiasti-
cally joined Debtags development and is now in the process of merging the large body of Debram data
into Debtags. Unable to attend Debconf5, Thaddeus has asked me to recommend to Debram users that
they migrate directly to Debtags at their convenience. Post-sarge, Debian Maintainers need not tag
their packages in Debram at all; standard Debtags tagging suffices.

Where to go from here

Contributing to the categorization

Tag your packages, you will

(Master Yoda)

Using debtags-edit

These are some examples on how to use debtags-edit to do some more serious categorization work. Most
of them are ways of identifying packages that need some work: once you find them in debtags-edit, you
can directly work on them

1. Fire up debtags-edit and set the filter to display all installed packages with the tag special::not-
yet-tagged. Now look at the results, pick something you know and add tags to it. After
you are satisfied with its categorization, remove the not-yet-tagged tags and submit.

2. Click on “Edit/TODO dialog”: a dialog will open with various TODO options:

Empty tagset lists all packages with no tags at all. Those are usually not re-
ported, because the central repository should automatically add special::not-

yet-tagged tags to them; however this is sometimes not the case, especially
for local packages or packages that have recently been added in the archive,
so this option is available to spot such packages.

Uitoolkit and not interface lists all packages which have uitoolkit tags but
not interface tags. This might be a normal situation, especially for soft-
ware libraries, but for normal applications it is probably an anomaly worth
checking.

14

http://debian.vitavonni.de/packagebrowser/index.cgi?tags=special::not-yet-tagged
http://debtags.alioth.debian.org/todoreport.html
http://www.mozilla.org/support/firefox/keyboard

Uitoolkit and not implemented-in lists all packages which have uitoolkit

tags but not implemented-in tags. This might be normal for documentation
about user interface toolkits, however it is an anomaly for applications and
libraries, and it’s worth checking as well.

Missing Role Ideally every package should have a kind of role in the distribution.
However, there are lots of packages which do not yet have a role::* tag. Since
the tags in the Role facet are still under discussion, this function is good to
bring up food for ideas.

Specials The options starting with “Specials” allow to see packages whose tag
sets are special cases compared to all the other packages with similar tags.
How this is computed is a bit complex, but this is proving to be very useful
to highlight some corner cases that lead to extra reasoning and improvements
of the vocabulary.

3. Click on “Edit/Facet dialog” to activate an experimental new feature of debtags-edit to find
even more corner cases.

This will pop up a dialog with two columns: the Has column and the And not column. Both
columns list facets.

If you click on a facet on the “Has” column, the “And not” column will list all the other
facets, together with a number. The number represent how many packages have the “Has”
facet, but no not have that “And not” facet. The “And not” facets are sorted by increasing
values of this number.

Sometimes all the “And not” facets have similar numbers, but sometimes there are facets
with numbers that are definitely smaller than the others. Those facets are very likely to have
something in common with the current facet in the “Has” column, since a lot of packages
have tags from both facets.

For instance, it happens at the time of writing that, when selecting the “Game” facet on the
left side, the corresponding “Use” facet reports a count which is one order of magnitude less
than the others. This is because of the existence of use::gaming, which is normally found
in most, if not all, game::* packages.

What are then those packages that have game::* but not use::gaming? Let’s see them:
click on “Use” on the right column, then click ok. That will set game:: && !use:: as
the base for the package list, and further filtering will be based on them. You can now see
what are those packages, and if you want you can check which of them are installed in your
computer.

With game::*, it turns out that there is a reason: there are games (many of which are
game::toys) that are not useful for gaming. Some examples are cappuccino, cowsay, polygen
and fortune. Howewer, one could realise that these toys have some other use before gaming.

Maybe a new “use::something” tag is needed?

The Facet Dialog has helped finding out.

Using debtags

debtags can be useful for tagging in two ways: both to give you hints on what needs to be worked on,
and as a low-level tool you can use if you want to automate tagging tasks.

There are three features of debtags you can use to get hints on what to do:

debtags todo: debtags todo prints a list of packages you have installed which are tagged with the
special::not-yet-tagged tags. No need for further explanations: tag them!

15

http://packages.debian.org/unstable/games/cappuccino
http://www.nog.net/~tony/warez/cowsay.shtml
http://www.polygen.org
http://www.redellipse.net/code/fortune
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org

debtags todoreport: this prints a text report about packages that need some work to do. It includes
a range of simple to very complex checks to find out problematic areas of the categorization, and
the report that it outputs contains explanations about the reasons behind every group of packages.
The report also includes packages that are not installed.

The output of debtags todoreport is periodically processed with rst2html and published at
http://debtags.alioth.debian.org/todoreport.html

debtags related: debtags related shows you what packages are similar (tagging-wise) to a given
one. Try running debtags related cdcd: you will see a list of other CD players. You can use
the -d switch to increase the distance of the search, that is, to include more packages that are “a
bit less similar”.

You can use this function to check if the list of related packages is what you would expect: if not,
you can check the tags of the missing or extra packages to see if there is anything wrong.

You an also use debtags as a low-level backend if you want to experiment with scripted or automated
tagging ideas:

debtags tagsearch and debtags tagshow: They allow you to search the tag vocabulary and show
information about a tag.

debtags tag ls, debtags tag add and debtags tag rm: These commands are intended to be run
from scripts, and they list the tags attached to a package and allow you to add or remove tags to
it. Try this:

debtags tag ls debtags

debtags tag add debtags game::toys

debtags tag ls debtags

debtags tag rm debtags game::toys

debtags tag ls debtags

Using tagcolledit

tagcolledit is a generic tool to do mass-editing of tags. It is not specific for Debtags, so it does not
know about packages, but compared to debtags-edit it can make it easy to do large-scale operations
like renaming of tags.

Let’s run tagcolledit:

Get a version of the tag database including the local patch

debtags cat > /tmp/tags

tagcolledit /tmp/tags

The interface of tagcolledit is unfortunately very rough, just like debtags-edit, and it needs some
explanation. It is divided in two panels, like Midnight Commander, and every panel works in the same
way: it has a filter, and a list of matching items (that are packages in our case).

Now try doing this: in the left panel, select the uitookit::qt tag. In the right panel, select the
implemented-in::c++ and the interface::x11. Now, QT is a C++ library, so one would expect most
of the QT applications to have an X11 interface and to be implemented in C++. With tagcolledit it’s
very easy to have a look at the left panel, select groups of packages that need fixing (the list supports
multiple selection), then right click on the selection and choose “Copy to other panel”. This will add
the tags implemented-in::c++ and interface::x11 to the selected packages, and they will show up
in the other panel as well.

You can do many other tricks with tagcolledit: merge or intersect tag sets, add a tag to a group
of items or even to all of them (right click on the tag in the filter: you will see the “Add to all” and
“Remove from all” functions).

16

http://docutils.sourceforge.net/docs/user/tools.html
http://debtags.alioth.debian.org/todoreport.html
http://debtags.alioth.debian.org
http://www.ibiblio.org/mc/

It is however easy to get carried away and make mistakes, such as adding the use::gaming tag to
all the games::toys, to find out later that packages such as fortune or cowsay cannot really be used to
play games.

Once you are finished with tagcolledit, you can save the tag database and quit. If you are happy
with your changes you will want to integrate them in the main tag database: first create a patch:

debtags mkpatch /tmp/tags > /tmp/tags.patch

This will create a tag patch with the changes you have made with tagcolledit. You can then add
your patch to the local tag patch:

cat /tmp/tags.patch >> ~/.debtags/patch

And see your changes in all the Debtags-aware applications.
Then you can submit it, with either debtags-edit or debtags submit.
You can even submit it directly:

debtags submit /tmp/tags.patch

Automated tagging

While generally there is a need for a smart brain to do good categorization, there are some tagging
tasks that can be automated. For example, it’s good enough to assume that all packages that depend
on libgtk2.0 will need a uitoolkit::gtk tag, while all packages that depend on libstdc++6 will
probably need an implemented-in::c++ tag.

These ideas have brought to creating autodebtag, which is a Perl script that does all kinds of
automated reasoning that I and other people in the debtags-devel list conceived so far. Then it prints
out a tag patch that can be evaluated, tested and submitted to the central tag database.

autodebtag has also some experimental code to try and bring categorization data from the debram
database into the Debtags world.

Benjamin Mesing is also experimenting with setting up a smart Bayesian engine to infer new tags
based on what tags are there now. This is has very promising and exciting possibilities: there is a
prototype available in the autodebtag subversion repository, and it needs more people to play with it.

Adopting a tag or a facet

If you regularly try out all image manipulation software, if you are a Gnome expert, if you are addicted
to role-playing games, you might consider adopting a tag.

Adopting a tag means that you take responsibility for checking from time to time that all packages
that should have your tag actually have it. It is a very important task, because it introduces a level of
reliability and guaranteed accurateness into some parts of the tag database.

For example, Stefano Zacchiroli is an Ocaml guru, and is taking care of the implemented-in::ocaml
tag. You will notice that all Ocaml applications have the implemented-in::ocaml tag, and thanks to
Stefano you can rely on that tag to be accurate. We need more people to do what he is doing.

To adopt a tag, just send an e-mail to the debtags-devel list, introduce yourself and tell what you
want to adopt. If it’s already taken, you can team up with the others and share the brainwork.

Contributing to the vocabulary

The vocabulary is another area needing help. Debian spans a very wide and diverse range of areas, and
knowing about all of them is nearly impossible.

There are two ways of having a good vocabulary to cover all of Debian’s interests:

17

http://www.redellipse.net/code/fortune
http://www.nog.net/~tony/warez/cowsay.shtml
http://debtags.alioth.debian.org
http://svn.debian.org/wsvn/debtags/autodebtag/trunk/
http://lists.alioth.debian.org/mailman/listinfo/debtags-devel
http://svn.debian.org/wsvn/debtags/autodebtag/trunk/
http://packages.debian.org/unstable/admin/debram
http://debtags.alioth.debian.org
http://svn.debian.org/wsvn/debtags/autodebtag/trunk/
http://www.bononia.it/~zack/
http://caml.inria.fr/ocaml/
http://caml.inria.fr/ocaml/
http://lists.alioth.debian.org/mailman/listinfo/debtags-devel

1. Wait until I learn about everything in Debian, reach enlightenment and open a Debian
monastery in the Alps, or

2. Create a group of people with knowledge on different fields to work on the vocabulary
together.

So far, we have been working mainly on 1. This was because there was poor documentation on
Debtags and its technical foundations. Now there is this paper, and it’s time to switch to the second
strategy.

If you feel like you could help (and you do not need to be a Debian Developer, but a Debian user with a
lot of experience in some field), you can read the tutorial at http://debtags.alioth.debian.org/vocabulary.html
and join the debtags-devel mailing list.

You can also make local experiments with the vocabulary: the Debtags FAQ has an entry with a
small tutorial on how to do it. Someone is trying to do it to provide specific sets of tags for their Custom
Debian Distribution, but it’s also a good way to experiment with ideas for new facets or tags.

If you are a package maintainer

If you are a package maintainer, please run debtags-edit and have a look at your packages. You are
probably the best person in Debian to assign tags such as implemented-in::*, interface::* and
uitoolkit::*, and it’s going to be very easy for you to do it.

Also remember that you can use more than one tag from the same facet, as your package may
contain more than one program, or it may contain programs with multiple behaviours: for example,
mutt or aptitude have uses both as interface::text-mode and interface::command-line programs.

Integrating Debtags in other applications

Now that you know everything about Debtags, you may want to make use of the Debtags data in your
applications, or play with Debtags using code instead of existing tools.

If that is the case, there is a selection of libraries and modules available for you.

libdebtags1-dev, python-debtags, libdebtags-perl

If you look inside the code of debtags and debtags-edit, you will notice that most of what they do related
to tags is calling functions from the libdebtags1 or libtagcoll1 libraries. libtagcoll1 provides
generic manipulation functions for tagged stuff, while libdebtags1 uses libtagcoll1 to implement all
Debtags functionality.

If you like programming in C++, install libdebtags1-dev; from there, you can either look at
debtags and debtags-edit source code for examples (debtags is particularly straightforward) and use
/usr/share/doc/libdebtags1-dev/html/index.html for the doxygen documentation.

The documentation still has missing parts. If you have questions, no matter how silly they could
seem, please ask them freely in debtags-devel list: I have promised to myself that I will turn every
answer I give into more documentation of libdebtags1-dev.

If you instead like coding in Perl or Python rather than C++, you can install either libdebtags-

perl or python-debtags: they are swig-generated bindings to libdebtags1.
Again, for whatever documentation or examples that are missing, ask in debtags-devel, and every

answer will also contribute to improve the documentation and examples in the packages.
This is an example Python code that plays with Debtags a bit (please teach me how to use iterators

properly):

18

http://debtags.alioth.debian.org
http://debtags.alioth.debian.org/vocabulary.html
http://lists.alioth.debian.org/mailman/listinfo/debtags-devel
http://debtags.alioth.debian.org/faq.html
http://www.mutt.org/
http://aptitude.sourceforge.net/
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org
http://www.doxygen.org
http://lists.alioth.debian.org/mailman/listinfo/debtags-devel
http://www.swig.org
http://lists.alioth.debian.org/mailman/listinfo/debtags-devel

import Debtags

Instantiate the simple Debtags class

dt = Debtags.DebtagsSimple(0)

Get some information from the vocabulary

voc = dt.vocabulary()

print "Facets:"

for a in voc.getFacets().getIterable():

print "%s: %s %s" % (a.name(), a.field("Status"), a.field("Nature"))

List the accessibility tags

fac = voc.getFacet("accessibility");

print "Tags in ’accessibility::’:"

for a in fac.tags().getIterable():

print a.name()

Print the tags of ‘‘debtags‘‘

tags = dt.getTags("debtags")

for a in tags.getIterable():

print a.name()

List the image editors in Debian

tags = Debtags.TagSet()

tags.insert(voc.getTag("use::editing"))

tags.insert(voc.getTag("media::rasterimage"))

editors = dt.getPackages(tags)

print "Raster image editors:"

for a in editors.getIterable():

print a.name()

This is the same example, written in Perl:

#!/usr/bin/perl -w

use strict;

use warnings;

use Debtags;

my $dt = Debtags::DebtagsSimple->new(0);

my $voc = $dt->vocabulary();

print "Facets: ",

join(’, ’, map { $_->name() }

@{$voc->getFacets()->getIterable()}), "\n";

my $fac = $voc->getFacet("accessibility");

print "Tags in ’accessibility::’: ",

join(’, ’, map { $_->name() }

@{$fac->tags()->getIterable()}), "\n";

print "Tags for ’debtags’: ",

join(’, ’, map { $_->fullname() }

@{$dt->getTags(’debtags’)->getIterable()}), "\n";

19

my $tags = Debtags::TagSet->new();

$tags->insert($voc->getTag(’media::rasterimage’));

$tags->insert($voc->getTag(’media::rasterimage’));

my $editors = $dt->getPackages($tags);

print "Raster image editors: ",

join(’, ’, map { $_->name() } @{$editors->getIterable()}), "\n";

Note

I’m sorry for the need of that getIterable function, but swig does not properly wrap C++
std::set classes yet. This is hopefully going to change as swig evolves.

libapt-front

libapt-front is the next-generation wrapper for libapt. The goal of the project is having a library to
base all package managers on, and to have it able to access different sources of metadata besides libapt.
Including Debtags.

libapt-front is still under heavy development, and Debtags support is still not implemented. However,
I have commit access to the libapt-front repository and I’ve recently been able to take libdebtags1

where I wanted it to be in order to support libapt-front: expect exciting news from this corner of Alioth!

User interface issues

Once we have the data and the functions to access it, we can improve the way we navigate our package
archive.

One area where more research is needed is finding good ways of navigating the package archive using
Debtags. As I mentioned before, in front of a list with more than about 7 plus or minus 2 items, our
brain goes banana [ZEN] [MILLER]. This sets a first goal for Debtags: to allow people to navigate the
package archive in such a way that no list of unrelated choices should have more than 7 plus or minus
2 items.

Do you know of any existing and very good interfaces to navigate such a large archive using faceted
categorization? I don’t. I know of very good examples on a much smaller scale, but we seem to have a
much more large, complex and heterogeneous dataset.

We need mockups and prototypes of interfaces offering an intuitive and efficient way of navigating
through tags, keeping in mind those 7+/-2 and EVN requirements.

As you can see running debtags-edit and tagcolledit, I still haven’t done much progress in this
field, and I’m desperately in need of good ideas.

Effective View Navigation

Prof. G. W. Furnas, who usually writes good stuff, made a very nice research (check it out!) and found
4 properties that something should have to be easy to navigate. He called them the properties of
Effective View Navigation or EVN properties [FURNAS]:

1. (EVT1) The number of outgoing links must be “small” compared to the size of the structure

2. (EVT2) The distance between pair of nodes in the structure must be “small” compared to
the size of the structure

3. (VN1) Every node must contain some valid information (called residue) on how to reach
any given other node

20

http://www.swig.org
http://www.swig.org
http://libapt-front.alioth.debian.org
http://debtags.alioth.debian.org
http://libapt-front.alioth.debian.org
http://debtags.alioth.debian.org
http://libapt-front.alioth.debian.org
http://libapt-front.alioth.debian.org
http://www.alioth.debian.org
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org
http://www.webdesignpractices.com/navigation/facets.html
http://www.si.umich.edu/~furnas/

4. (VN2) The information associated to each outgoing link (called outlink-info) must be small.

I did some research on this idea related to categorization [TAGCOLL], and designed an algorithm
that is able to present navigational choices of tags in a way that is compatible with the 4 EVN require-
ments. It is a good start, and recent debtags-edit are making use of it in the filter, to reduce the amount
of facets when there are too many to display.

This algorithm has potential, but the results are still not perfect: you can now start the navigation
with 19 facets instead of the 32 available, but that’s still far beyond 7 plus or minus 2. The main cause
of this is that tag data is still incomplete: the “TODO Specials” features of debtags-edit are there to
expose those packages that are causing problems.

From my experience, however, I see that algorithm as a point of departure rather than a point of
arrival, and more smart navigation ideas are waiting to come to life.

Conclusions

This paper is the first single comprehensive source of information about the Debtags project. It has
covered the theoretical foundations, the tools existing at the moment, how to take advantage of Debtags
and various ways of getting involved.

Since we would really like to get help, I’ll repeat a short summary on how to get involved:

• help with tagging (see Contributing to the categorization)

• adopt a tag or facet (see Adopting a tag or a facet)

• help maintaining the Debtags webpages

• help maintaining the various Debtags Debian packages (but I have to warn that it’s not an easy
packaging task)

• maintain a language binding (if you know swig)

• help testing the code and writing example programs

If you are interested in helping, or just curious to see what’s happening, join the debtags-devel
mailing list: that’s where people hang out, discussions happens and announcements are posted.

Bibliography

[STECKEL] Mike Steckel,“Ranganathan for IAs”, 2002, http://www.boxesandarrows.com/archives/ranganathan for ias.php

[ZEN] Enrico Zini, “Zen and the art of Free Software: know your user, know yourself”, 2004,
http://people.debian.org/˜enrico/talks/2004linuxtag/

[MILLER] George A. Miller, “The magical number seven, plus or minus two: Some lim-
its on our capacity for processing information”, 1956, Psychological Review n.63 pp. 81-91,
http://www.well.com/user/smalin/miller.html

[FURNAS] George W. Furnas, “Effective View Navigation”, 1997, Proceedings of CHI’97
pp. 367--374, ACM Conference on Human Factors in Computing Systems, Atlanta,
http://www.si.umich.edu/˜furnas/Papers/CHI97-EVN.2.pdf

21

http://debtags.alioth.debian.org
http://debtags.alioth.debian.org
http://debtags.alioth.debian.org
http://www.swig.org
http://lists.alioth.debian.org/mailman/listinfo/debtags-devel
http://www.boxesandarrows.com/archives/ranganathan_for_ias.php
http://people.debian.org/~enrico/talks/2004linuxtag/
http://www.well.com/user/smalin/miller.html
http://www.si.umich.edu/~furnas/Papers/CHI97-EVN.2.pdf

[TAGCOLL] Enrico Zini, “The tagged collection: an alternative way of organizing a
collection of bookmark-like items and its integration with existing web browsers”, 2001,
http://svn.debian.org/wsvn/debtags/tagcoll/trunk/doc/

22

http://svn.debian.org/wsvn/debtags/tagcoll/trunk/doc/

	Contents
	Introduction
	Lots and lots of packages
	Archive sections

	Debtags theoretical foundations
	Classifying software
	Faceted Classification
	Some use case examples
	The design of Debtags
	Facets
	Tags
	The Vocabulary
	The tag database

	Using debtags
	debtags
	debtags-edit
	Running debtags-edit
	Searching packages
	Tagging packages

	packagesearch
	packagebrowser
	debram

	Where to go from here
	Contributing to the categorization
	Using debtags-edit
	Using debtags
	Using tagcolledit
	Automated tagging
	Adopting a tag or a facet

	Contributing to the vocabulary
	If you are a package maintainer
	Integrating Debtags in other applications
	libdebtags1-dev, python-debtags, libdebtags-perl
	libapt-front

	User interface issues
	Effective View Navigation

	Conclusions
	Bibliography

